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Abstract—This paper presents a tunable interdigital coplanar
filter with tapped-line feedings. Microelectromechanical systems
capacitors are used as a high contrast capacitive switch between
a quarter-wavelength resonator and an open-ended stub to per-
form the frequency shift. A two-pole tunablefilter with a 13% rel-
ative bandwidth hasbeen designed, fabricated, and measured. The
center frequency can be switched from 18.5to0 21.05 GHz with low
return losses (lessthan 15 dB) and low insertion losses (3.5 dB).

Index microelectromechanical

(MEMS).

Terms—Filters, systems

|. INTRODUCTION

HE recurring demand for ever more flexible and sophisti-

cated, compact, and low-power wireless systems has gen-
erated the need for technol ogical solutionsthat can dramatically
reduce manufacturing cost, size, weight, improve performance,
and battery life [1]. Tunable systems are, therefore, receiving
an increasing attention since this is an elegant way to meet a
great part of these requirements. For instance, tunable systems
avoid the repetition of front-end radio structures for multistan-
dard applications, or they can add flexibility to present analog
front-ends in awide range of applications.

In existing systems, tuning is obtained using lumped com-
ponents such as MESFETS, varactors, or p-i-n diodes in con-
junction with passive components[2], [3]. Filtersare among the
components that did receive much attention since they are very
sensitive to loss. Semiconductor-based tunable filters have im-
portant insertion-loss level, low isolation, electrical power con-
sumption, and overall degraded performances compared with
fixed frequency filters. Moreover, loss compensation circuits
usually add noise to the filter and can cause instability of the
component.

Recent developments in microelectromechanical systems
(MEMS) have made possible the design of tunable filters and
are expected to bring anew interest to these components[4]{7].
Indeed, MEMS offer low losses, near-zero power consumption,
and they can be monolithically integrated with conventional
microwave integrated circuit (MIC) passive fabrication tech-
niques.

This paper presents an original tunable interdigital coplanar
waveguide (CPW) filter with tapped feed line input/output.
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Fig. 1. Drawing of a MEMS capacitive cantilever switch. (a) In the off state.
(b) In the on state.

Tuning is achieved using surface micromachined cantilever
variable capacitors with electrostatic actuation, which will be
described below.

The CPW filter design and structure will be presented next,
aswell as specific aspects of MEMS microwave simulation. Fi-
nally, measured performances will be presented and discussed.

II. MEMS DESIGN AND FABRICATION
A. MEMS Description

A MEMS series capacitive cantilever-type switch isshownin
Fig. 1.

This component presents a movable metallic membrane sus-
pended above a lower electrode, forming a capacitor between
these two conductors. In the up state the capacitance Coff is
small, since air is separating the two electrodes [see Fig. 1(3)].
The varactor value is controlled by the distance between the
two electrodes. By applying a dc-bias voltage, the upper mem-
brane is deflected by the electrostatic force down to the op-
posite electrode: the gap is reduced and the capacitance is in-
creased. If the applied voltage becomes higher than the can-
tilever pull-in voltage, the suspended membrane snaps down to
the lower electrode[see Fig. 1(b)]. Theresulting capacitancein-
creases sharply, its value (C'on) depends on surface roughness
of the upper membrane and the dielectric constant of the insu-
lating layer.

There are two waysto use these cantilevers as variabl e capac-
itors: either the capacitanceis changed using the “ stable” region
(before pull-in) or the cantilever is used as a switch, with high
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Fig. 2. Microphotograph of the fabricated filter.

ratio between the up and down states. We did use this approach
inthisstudy sinceit presents several advantages. Indeed, the ca-
pacitance can be switched between two well-defined values, it
isinsensitive to vibration or noise, and the tuning rangeis only
limited by the on-to-off capacitance ratio of the MEMS can-
tilever. Such MEM S variabl e capacitors can be decoupled by an
appropriate fixed-series capacitor (or open-ended line section)
that will allow to control capacitance variation and to minimize
itsimpact on loss [8]. Since MEMS have large on-to-off ratios,
a decoupled MEMS varactor can till achieve relatively large
frequency variations with low losses. At last, digital-like imple-
mentations have been demonstrated [6] and allow fine-tuning
performance.

B. Fabrication

MEMS fabrication starts with the deposition of a
300-A/9000-A Ti/Au evaporated layer, on a 1-mm-thick
fused silica substrate. An evaporated layer is chosen since
it offers a very smooth surface that improves the capacitive
contact quality. This Ti/Au layer is patterned and an SiCr
resistive layer is evaporated and patterned.

This layer will be used for the integration of biasing resis-
tors. Next, a 1500-A-thick alumina layer is deposited using a
pulsed laser deposition system and lifted off. Using the appro-
priate deposition parameters, very smooth dielectric layers can
be obtained at room temperature with this technique. Thisinsu-
lating layer prevents direct contact between thefirst and second
metal layers (Fig. 1) and can also be used as an insulating layer
in metal—insulator—metal (MIM) capacitors.

Next, a 2.8-m-thick sacrificial layer is spun and patterned
onto the wafer. A second layer of 50-A/1000-A Ti/Au layer is
evaporated and gold is electroplated up to 3 :m.

After this last metal layer has been patterned, the sacrificia
layer is removed and the component is released, using a CO2
critical point drying system. A microphotograph of the fabri-
cated filter is shown Fig. 2.

In this process, the typical ratio between the capacitance in
the up state and the down state is around 20, the capacitance in-
creases from 40 fF to approximately 800 fF for a cantilever ca-
pacitor, as used below. Typically measured pull-down voltages
are between 60 and 70 V because of theinitial height and short
length of the cantilevers (Fig. 3).
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Fig. 3. Interdigital coplanar second-order filter. Connection between the two

lines is performed with three MEMS cantilevers. The required mode filter
bridges are not shown in this figure.
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Fig. 4. Close-up view of the MEMS area.

I11. TUNABLE FILTER DESIGN AND STRUCTURE

Generally, the response of apassivefilter isoptimal at agiven
frequency. However, tuning the center frequency impliesavari-
ation of one or more of the filter component parameters (such
as electrical lengths) that can affect electrical characteristics
(matching, insertion losses, bandwidth, etc.). To limit the effects
of tuning on filter performances, its structure has to be carefully
selected.

Interdigital filter structures exhibit a good tolerance con-
cerning center frequency variations[9]. A CPW implementation
is shown Figs. 2 and 3. This two-pole filter is made of two
quarter-wavelength CPW resonators, terminated by MEMS
cantilevers. These cantilevers are used as variable series capac-
itors between the resonator and the additional open-ended short
transmission-line section.

When the cantilevers are moved down, the center frequency
shifts since the capacitive part of the resonatorsis changed. The
cantilevers are actuated by applying avoltage between the addi-
tional line section and theresonators. A high-value SiCr resistor
is used to decouple RF from the biasing network. This network
passes under the CPW ground plane to minimize the perturba
tion on the circuit. (Fig. 4)

It canbeseenin Fig. 2 that air bridges have been added to this
structure since the tapped feed-line excitation scheme makesthe
structure highly nonsymmetrical. Electromagnetic simulations
have shown that currents are very high on these bridges and
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Fig. 5. Computed frequency variation versus on-to-off ratios of the MEMS
varactorsfor thegeometry Fig. 3. The performance of aperfect seriesconnection
is shown via the dashed line.

that their number have a significant impact on losses and center
frequency.

The two-pole filter was designed using Agilent Momentum
in the strip simulation mode. Our objective was to be as close
as possible to a Chebyshev filter with 0.1-dB ripple for both
states. Therefore, the filter has been first optimized for an IF
of 20 GHz with 10% fractional bandwidth to minimize varia-
tion and mismatch between the two center frequencies resulting
from changes in the capacitance values. The resonator lengthis
L = 1635 m and the additional coplanar line section lengthis
AL = 500 pm.

Each resonator is ended by three MEM S cantilevers, 150-;m
long, suspended 50 ;:m over the extraresonator section. We use
three cantilevers in parallel for two reasons. First, this type of
fork-like design eases the release process of the structures. The
second reasonisthat, inthisdesign, only thetip of the cantilever
is used as a capacitor, that is to say, each cantilever has a small
capacitancevalue. Intheend, thethreefingersinparalel formsa
capacitor with alow series resistance regarding the capacitance
and reduce loss in the circuit.

MEMS were taken into account in the full-wave simulations
using vias and strip metallization. The on and off states were
simulated using two different heights in the substrate definition
so that both air bridges and cantilevers can betaken into account.
In order to check the influence of on-to-off capacitance ratio on
the filter tuning performances, we did simulate the frequency
shift versus on-to-off ratios using Momentum. The results are
reported in Fig. 5. It can be seen that an on-to-off ratio higher
than 20 approaches the frequency shift obtained by direct con-
nection between the resonator and line sections (in that case,
13.2%).

IV. MEASUREMENTS

M easurements were done using an HP 8510C network ana-
lyzer and a cascade probe station. Calibration was done using a
short-open-line-thru (SOLT) procedure.

Simulated and measured S-parameters are presented in
Fig. 6. Good agreement is shown between simulated and
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Fig. 6. Simulated and measured responses of the tunable filter. (a) Switches
up. (b) Switches down.

measured data. In the simulations, the metallic losses are taken
into account assuming gold conductivity of 3.9%7 S.- m—1, but
radiation losses also have a significant contribution. Therefore,
measured data exhibit higher losses than simulation. Still, the
level of losses is low and out-of-band rejection is relatively
large. Also, there is a frequency shift between simulations
and measurements and this is due to the difficulty to estimate
properly theinfluence of air bridges at the input of the structure
since their shape is not perfectly flat, as it is assumed in the
simulations.

In the up state [see Fig. 6(a)], the measured center frequency
is 21.05 GHz. The 3-dB fractiona bandwidth is around 14%,
which is equivalent to an absolute bandwidth of 2.9 GHz, and
measured insertion losses are 3.5 dB. Return losses are better
than 15 dB.

When the switches are down, the center frequency is shifted
down to 18.5 GHz [see Fig. 6(b)]. The 3-dB fractiona band-
width is increased to 13%, which is equivalent to an absolute
bandwidth of 2.4 GHz. Measured insertion losses are 3.8 dB,
whilereturnlosses are approximately 12 dB. Thissmall increase
in insertion-loss level can be explained by this changein return
loss.
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The measured tuning rangeis 2.55 GHz, at acenter frequency
of 19.77 GHz, which is equivalent to 12.8% relative frequency
shift. This frequency shift corresponds to an on-to-off ratio of
approximately 20, which is in good agreement with the plot
showninFig. 5. and typical on-to-off variations obtained on this
process.

The simulations were done using thisratio, and it can be seen
that the frequency shift is also well predicted.

V. CONCLUSIONS

A second-order millimeter-wave tunable bandpass filter has
been designed, fabricated, and measured. MEMS elements are
monolithically implemented on the filter resonators and they
are used as on—off switches between each resonator and an
additional line. This filter has demonstrated that low-insertion
losses, good rejection, and large tuning range can be achieved
using MEMS fabrication techniques. This kind of component
will be useful for the integration of multiband low-noise and
|low-power receivers.
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